Parameter Estimation for Inhomogeneous Markov Random Fields Using PseudoLikelihood

نویسندگان

  • I. V. Cadez
  • P. Smyth
چکیده

We describe an algorithm for locally-adaptive parameter estimation of spatially inhomogeneous Markov random elds (MRFs). In particular, we establish that there is a unique solution which maximizes the local pseudo-likelihood in the inhomogeneous MRF model. Subsequently we demonstrate how Besag's iterative conditional mode (ICM) procedure can be generalized from homogeneous MRFs to inhomogeneous MRFs using this fact. This leads to an eecient local algorithm for parameter estimation in inhomoge-neous MRFs. Experimental results on synthetic images clearly illustrate the utility of the method, showing considerable improvement in segmentation accuracy resulting from the proposed approach compared to homogeneous MRFs or non-spatial segmentation using the k-means algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Estimation for Homogeneous and Inhomogeneous Gaussian Random Fields

This paper investigates Bayesian estimation for Gaussian Markov random elds. In particular, a new class of inhomogeneous model is proposed. This inhomogeneous model uses a Markov random eld to describe spatial variation of the smoothing parameter in a second random eld which describes the spatial variation in the observed intensity image. The coupled Markov random elds will be used as prior dis...

متن کامل

Revisiting Boltzmann learning: parameter estimation in Markov random fields

This contribution concerns a generalization of the Boltzmann Machine that allows us to use the learning rule for a much wider class of maximum likelihood and maximum a posteriori problems, including both supervised and unsupervised learning. Furthermore, the approach allows us to discuss regularization and generalization in the context of Boltzmann Machines. We provide an illustrative example c...

متن کامل

An Inhomogeneous Bayesian Texture Model for Spatially Varying Parameter Estimation

In statistical model based texture feature extraction, features based on spatially varying parameters achieve higher discriminative performances compared to spatially constant parameters. In this paper we formulate a novel Bayesian framework which achieves texture characterization by spatially varying parameters based on Gaussian Markov random fields. The parameter estimation is carried out by ...

متن کامل

Modeling of Inhomogeneous Markov Random Fields with Applications to Cloud Screening

Cloud screening is the process of classifying pixels in satellite images which contain clouds and is an important step in processing remotely-sensed images. This paper applies inhomogeneous statistical spatial models in the form of Markov random eld models (MRF) to this problem and develops an e cient algorithm for the estimation of model parameters. The algorithm has a natural parallel decompo...

متن کامل

Joint Structure Estimation for Categorical Markov Networks

We consider the problem of identifying and estimating non-zero parameters in the Markov model for binary variables. We approximate the full likelihood by a pseudolikelihood function and propose a joint `1-penalized logistic regression method, which imposes overall sparsity on the parameters. We show that the proposed method leads to consistent parameter estimation and model selection under high...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007